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Abstract. Power demand forecasting is a critical task to achieve effi-
ciency and reliability in the smart grid in terms of demand response and
resource allocation. This paper proposes PowerLSTM, a power demand
forecasting model based on Long Short-Term Memory (LSTM) neural
network. We calculate the feature significance and compact our model
by capturing the features with the most important weights. Based on
our preliminary study using a public dataset, compared to two recent
works based on Gradient Boosting Tree (GBT) and Support Vector
Regression (SVR), PowerLSTM demonstrates a decrease of 21.80% and
28.57% in forecasting error, respectively. Our study also reveals that
metering /forecasting granularity at once every 30 min can bring higher
accuracy than other practical granularity options.

1 Introduction

Modern smart grid is an enhanced electrical grid that takes advantage of sensing
and information communication technologies to improve the efficiency, reliability
and security of the power grid. Smart metering is a major improvement brought
by smart grids, which facilitates real-time metering. One resulting benefit is
the power demand forecasting based on such meter measurement, which affects
the power generation scheduling and power dispatching for a future period by
predicting the power demand in that period using historical data in hand.
Power demand forecasting is important for both power companies and power
consumers [22]. In general, the forecasting results have different interpretations
when applied to the aggregation and the individual. The aggregation forecasting,
which is to predict the power demand of a number of consumption units, e.g.,
the apartments within an area, is more meaningful to power utility companies.
Based on the aggregation demand forecasting results, they can allocate proper
resources to balance the supply and demand or adjust the demand response
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strategy such as dynamic pricing to shape the load so as to avoid the infrastruc-
ture capacity strain. On the other hand, individual power demand forecasting
assists in the anomaly detection task in the smart metering system. Anomaly
detection detects the abnormal meter measurements caused either by the unex-
pected meter failure or the deliberate meter manipulation by identifying those
measurements that do not present a conformation to the predicted/expected
values. Moreover, under dynamic pricing strategy, individual power forecasting
also provides power consumers with their expected power consumption and cost
in a future period, so that they can optimise their usage schedule accordingly to
achieve a lower cost.

Though demand forecasting has been widely studied for years, two challenges
in making accurate forecasting are still in front of us. One challenge is that even
though the power demand seems like a univariate time series [28], it is subject to
various influential factors which may have discriminative capability in influencing
the power demand. The second challenge is that it is not trivial to chase optimal
forecasting settings so as to obtain a promising results. The time granularity
of metering is flexible in modern smart grids. By investigating what kinds of
metering /forecasting granularities can bring an accuracy gain, it can not only
provide empirical guidelines for better forecasting accuracy but also evaluate
whether a model can work well with typical granularities in today’s smart grid.

With the above challenges in mind, this paper proposes a power demand fore-
casting model named PowerLSTM. Firstly, we identify a set of features derived
from three categories, i.e., the historical consumption data, the weather informa-
tion, and the calendar information. In each category, there are a series of features
that potentially and reasonably have influence on the consumers’ power demand.
Then, we analyse the significance of each feature and select an appropriate set
of features to be used later in our forecasting model. After that, we introduce
our model PowerLSTM. PowerLSTM takes advantage of the Long Short-Term
Memory (LSTM) network, which is a special form of Recurrent Neural Network
(RNN) with certain memory capability. In order to evaluate the effectiveness of
PowerLSTM, we compare it with two representative techniques based on Gradi-
ent Boosting Tree (GBT) [5] and Support Vector Regression (SVR) [26]. For the
sake of fair comparison, we implement our model and theirs as well, and eval-
uate all three models using a public real-world dataset. Finally, we experiment
with different metering/forecasting granularities to evaluate the accuracy over
different granularities that are used in practical services.

In summary, the main contributions of this paper are as below.

— We propose PowerLSTM, which, to the best of our knowledge, is the first
power demand forecasting model based on LSTM that incorporates time-
series features, weather features, and calendar features.

— We compare PowerLSTM with two representative models adopted in recent
research works, i.e., GBT [5] and SVR [26]. In our preliminary study, PowerL-
STM outperforms both models by reducing the Mean Squared Error (MSE)
by 21.80% and 28.57% compared to GBT and SVR, respectively.
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— We evaluate the accuracy of our model with various granularities that are
typical in today’s smart grid systems. The results reveal that a moderate
metering/forecasting granularity at once every 30 min performs better than
other granularities.

2 Related Work

Power demand forecasting has been widely studied due to its significance in
power industry. The existing works can be generally classified into two categories,
i.e., classic statistical models and modern machine learning algorithms.

In terms of statistical models, time-series modeling is used to capture the
time-series characteristics of power demand, e.g., ARMA [14,19], ARIMA [2,7].
Hong et al. [16] adopt multiple linear regression to model hourly energy demand
using seasonality (regarding year, week, and day) and temperature information.
Their results indicate that complex featuring of the same information results in
a more accurate forecasting. Fan and Hyndman [8] use semi-parametric additive
model to explore the non-linear relationship between energy usage data and
variables, i.e., calendar variables, consumption observations, and temperatures,
in the short-term time period. Their model demonstrates sensitivity towards
the temperature. Recently, conditional kernel density estimation is applied to
power demand forecasting area [4] which performs well on dataset with strong
seasonality. Time-series models are based on the assumption that the future
power demand has the same or similar trend and distribution as the observed
history. However, the power demand in reality is influenced by many factors
in various ways. Therefore, it is essential to take these influential factors into
consideration.

There are three major machine-learning algorithms used in demand forecast-
ing tasks, namely Decision Tree (DT) [5,11,27], Support Vector Machine (SVM) [9,
17,21,23,25,26], and Artificial Neural Network (ANN) [9,29]. DT is used to pre-
dict building energy demand levels [27] and analyse the electricity load level based
on hourly observations of the electricity load and weather [11]. Differently, Bansal
et al. [5] use an evolved version of decision tree, Boosted Decision Tree Regression
(BDTR), to model and forecast energy consumption so as to create personalised
electricity plans for residential consumers based on usage history. The regression
based on SVM is named Support Vector Regression (SVR). There are works using
SVR to forecast power consumption [25] or using it in combination with other
techniques, such as fuzzy-rough feature selection [23|, particle swarm optimiza-
tion algorithms [21], and chaotic artificial bee colony algorithm [17]. Gajowniczek
and Zabkowski choose SVM and ANN because they believe that time-series analy-
sis is not suitable in their work since they observe high volatility in the data [9].
Yu et al. [26] uses SVM and Backward Propagation Neural Network (BPNN),
whose results show that SVM offers smaller prediction errors than BPNN. Zufferey
et al. [29] apply Time Delay Neural Network (TDNN) and find out that the indi-
vidual consumer’s consumption is harder to predict than an aggregation of multi-
ple consumers. Very recently, Marino et al. [18] construct LSTM deep neural net-
works to forecast building energy load using historical consumption data. Despite
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the extensive research carried out in power demand forecasting area, to the best
of our knowledge, there is no such work taking advantage of LSTM RNN based on
features other than time series. It is promising to explore the effectiveness of such
idea in power demand forecasting area, which has motivated this work.

3 Our Approach

3.1 Overview

Our approach is to forecast power demand by modeling the relationship between
power demand and relevant features using the proposed PowerLSTM. Figure 1
illustrates the high-level pipeline of our approach. A recent publicly available
dataset recording apartment power usage in a high frequency is used. From this
dataset, we develop three categories of features that are considered relevant to
the power demand. Then, we employ feature selection to remove features that
are less important to reduce dimensionality and model complexity as features
may not be equally effective. After that, we use the selected features to train
PowerLSTM. The details of each process are explained in the subsequent sub-
sections.

il
Historical Consumption

s
-

:@ Feature Feature PowerLSTM PowerLSTM
Dataset 7 ) ™ . I .
Design Selection Training Model
Weather Information
EiEE

Calendar Information

Fig. 1. Approach overview.

3.2 Power Usage Dataset

We use the publicly available power usage dataset provided by University of
Massachusetts [1]. Three reasons for choosing this dataset are (a) when devel-
oping technology which reflects consumers’ life styles and further the power
consumption behaviours, a recent dataset would be beneficial to incorporate the
latest power consumption characteristics; (b) power consumption data recorded
at high frequency provides us with detailed information in finer time granularity
and allows us to flexibly down-sample to explore lower granularities; and (c¢) as
a public dataset, it would facilitate the further comparison with our work.

The dataset contains power usage data for 114 apartments located in West-
ern Massachusetts for the period from year 2014 to 2016. The dataset records
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the power of every single apartment in fixed temporal frequency'. The metering
frequency is once every 15 min for 2014 and 2015, and once every 1 min for 2016.
Along with the power consumption data, hourly weather information, including
various meteorological attributes, during the record period is available, a sam-
ple of which is shown in Table1. In our experiment, we use the data of year
2016 because its finer granularity in recording provides us with more space for
exploring influence of granularity on accuracy of power demand forecasting.

Table 1. Weather data sample.

time temperature | apparentTemperature | windBearing | dewPoint
1451624400 | 36 29.75 278 24.54
summary | humidity precipIlntensity cloudCover | visibility
Clear 0.63 0 0 10

icon windSpeed | precipProbability pressure -
clear-night | 7.94 0 1016.61 -

3.3 Feature Engineering

Feature Design. The features used by the existing forecasting models fall
into three categories in terms of privacy, i.e., publicly available information
(e.g., weather information), household private information (e.g., demography),
and quasi-private information. The quasi-private information here is defined
as privacy-related information which is known only to authorized entities. For
example, the historical power consumption data acquired by a power utility com-
pany can be used to infer certain private household characteristics [3], but it is
only available to the authorised personnel within the utility company.

Although household private information may have significant influence on the
household power demand (e.g., more people living in the house leads to larger
power demand), in this paper we limit the features to non-private information
due to the following reasons. First of all, we would like to involve no household
specific data in forecasting procedure other than power meter readings due to
the privacy concern. Secondly, although utility companies may have access to
some household private data such as locations, it is not common for them to have
other private information, e.g., the number of occupants and their employment
status. Thirdly, the forecasting model not based on the household specific data
can be applied to larger scales easily, such as building level or area level.

We use the three categories of features in this paper, i.e., historical consump-
tion data, weather information, and calendar information.

a) Historical consumption data is the actual observation of the prediction tar-

Historical tion data is th tual ob ti f th diction t
get, which directly reflects the consumption pattern. Power utility companies
can obtain this data by smart metering technology in smart grids.

! Given that the metering interval is fixed, the power is able to represent the power
consumption.
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(b) Weather information has influence on the power demand since some appli-
ances (e.g., air conditions) are sensitive to weather conditions.

(c) Calendar information, such as weekday or weekend, shapes the consumers’
power consumption behaviour in terms of different activities. It indicates
the consumption pattern according to the calendar feature and cycle.

The features based on the above three categories are summarized in Table 2.
There are n + 18 features in total, among which, n features are from historical
consumption data, 13 are from weather information, and 5 are designed from
calendar information. The historical data involves a huge number of data points
which are not feasible to be fed to the model directly. Therefore, it is necessary
to find out length of historical data points n that are most correlated with the
target forecast value. To solve this problem, we use AutoCorrelation Function
(ACF), which can quantify the correlation between time-series data points of
various time lags, to find the appropriate n.

Table 2. Features for the power demand forecasting task.

Features category Feature detail

Historical consumption data | Consumption data in past n time slots

Weather information Summary, icon, temperature, apparent temperature,
cloud cover, precip probability, precip intensity,
visibility, wind speed, wind bearing, humidity,
pressure, dew point

Calendar information Day of the month, day of the week, hour of the day,
period of the day (i.e., daytime and night time), is
weekend (boolean value)

Feature Selection. In order to design a predictive and compact model, it is
necessary to choose the features that have most significant influence on the power
demand as some of the features may be redundant while some may be irrelevant.
To investigate such discriminative power of features, we use feature selection to
prune such redundant and irrelevant features and leave those important ones.

We use Random Forest-Recursive Feature Elimination (RF-RFE) to recur-
sively select the optimal feature subset. It is to select a desired number of features
by creating predictive models, weighing the importance of features, and elimi-
nating those with least importance. Each recursive step is to consider a smaller
set of features, and repeated till the desired number of features is reached.

3.4 Long Short-Term Memory Model

Long Short-Term Memory (LSTM) neural network [15] is a variant of RNN
that is capable of learning long-term dependencies. Different from the tradi-
tional neural network that only relies on previous N histories when solving the
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problem, RNN allows unlimited history information to persist due to its inter-
nal loops. The network architecture of RNN makes it a prevailing choice for
solving problems related to sequences. In theory, RNN should be able to learn
long-term dependences, which, however, is demonstated to have practical diffi-
culties [6]. Under this circumstance, LSTM is designed to solve the challenge of
long-term dependences [13], which has demonstrated its practicality and sucess
in tasks that are not solvable by other RNNs, such as continual prediction [10],
speech recognition [12], language modeling [20], and translation [24]. Its capabil-
ity in power demand forecasting is worth exploring due to the sequential nature
of power readings.

X, (e P

b ' Input Gatei, ! Forget Gatef, |

I
\_ LSTM Cell

Fig. 2. LSTM cell.

The core idea of LSTM is a memory cell which can maintain the informa-
tion over time controlled by various gate units. The LSTM cell as illustrated in
Fig. 2 processes the information to maintain a cell status based on both current
input z; and previous output h;—; (i.e., the recurrent input), then decides what
information to be left and what to be passed on (i.e., hy) by introducing gate
units, i.e., “input gate”, “output gate” and “forget gate”. The input gate is used
to control whether it allows the state in current cell to be overridden by outside
information, as shown in Eq. (1),

1 = og(Wixt + Uhy—1 + bi) (1)

where i, is the input gate vector, o, the sigmoid function, x; the input vector, W;
and U; the parameter matrices, and b; the bias vector. The output gate decides
whether the status in the cell should affect other cells, whose formulation is
shown in Eq. (2),

O = 0'g<WOI't + Uoht—l + bo) (2)

Another gate, forget gate, is introduced by Gers et al. [10] which allows the
LSTM to reset its own state. It is formulated as below,

ft = O'g(WfCE't + Ufht_l + bf) (3)

Finally, Egs. (4) and (5) show how cell state ¢; and output vector h; are obtained
from input gate, forget gate, and output gate,

et =ftOci—1 it ©oc(Wexy + Uchi—1 + be) (4)

he = 0 © op(c) (5)

where ® denotes the Hadamard product, and o. and o} are the hyperbolic
tangent function.
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LSTM can work in a multilayer manner, each layer of which composes of
multiple cells. There is a trade-off between the modeling capability and the per-
formance efficiency. The more complicated the model is, the better capability
it may have. However, this may result in an over-fitting model which performs
extremely well in training set but cannot adapt to the other data of the dataset.
At the same time, over-complicate model would be an inefficient model. Due to
the above considerations, PowerLSTM adopts a moderate structure with two
LSTM layers, so as to prevent overfitting while allowing for reasonable general-
ization.

4 Evaluation

This section first introduces two models in recent literature [5,26] as the base-
lines, and two metrics to quantify the accuracy of forecasting models. After that,
we evaluate the effect of feature selection, compare PowerLSTM with two base-
line models, and investigate forecasting results in different metering/forecasting
granularities for evaluating the accuracy in practical use cases.

4.1 Preparation

Baseline. We choose two recent works as the baseline models in this paper.
One of them adopts GBT [5] and the other one adopts SVR [26].

GBT is adopted by Bansal et al. [5] to forecast power consumption. GBT
is a supervised learning predictive model which can be used for classification
and regression purposes. GBT builds the model, i.e., a series of trees, in a step-
wise manner. In each step, it adds one tree, while maintaining the existing trees
unchanged. The added tree is the optimal tree that minimizes a predefined loss
function. Basically, GBT is an ensemble of weaker prediction models, which
becomes a better model.

SVM is used in the work by Yu et al. [26] to forecast power usage. SVM
is a supervised machine learning algorithm for solving both classification and
regression problems. SVM does classification by seeking the hyper-plane that
differentiates the two classes to the largest extent, i.e., maximizing the margin.
Similarly, regression using SVM, that is SVR, is to seek and optimize the gener-
ation bounds by minimizing the predefined error function. SVR supports both
linear and non-linear regression. For the non-linear SVR, it transforms the data
into a higher dimensional space to perform the linear separation.

Evaluation Metric. In order to evaluate the accuracy of the forecasting model,
we introduce Mean Squared Error (MSE) and Mean Absolute Percentage Error
(MAPE). The closer the value is to zero, the more accurate the forecasting is.
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MSE measures the average of the squared errors/deviations as directed by
Eq. 6, where n is the total number of forecast values, A; and F; denote the actual
and forecast value at time t, respectively.

1 n
MSE ==Y (A — F})? (6)
"=
Different from MSE, MAPE measures the error proportion to the absolute value.
It expresses the error as a percentage and can be calculated using Eq. 7.

At — Ft
Ay

n

MAPE = 100% Z

n
t=1

(7)

MSE is useful in comparison experiments with identical test dataset, as it is the
absolute square error value that depends on the scale of actual values. On the
other hand, MAPE is more indicative in comparison between different dataset
since it represents the error in a percentage manner. However, MAPE, (a) is not
defined when A; is zero?; and (b) has a heavier penalty on negative errors when
A; < Fy. Therefore, we use both MSE and MAPE to provide complementary
measurements on the model accuracy.

4.2 Effect of Feature Selection

As mentioned in Sect. 3.3, features may not positively contribute to the fore-
casting task. Redundant features may drag down the performance and irrele-
vant features may even disturb the prediction. This experiment investigates the
contribution of each feature to the prediction, and the effect of feature selection.

We use RF-RFE to evaluate the importance weights of features in an hourly
metering/forecasting granularity. Based on the ACF outcome which shows the
most related number of lag is 49, we have 49 + 18 features in total. We run RF-
RFE on these 67 features and obtain their importance weights. We select the
top 12 important features since the importance weights after that are much less
significant. Figure 3a presents the features with the top 12 importance weights.
Energy-n denotes the hourly power consumption n hours prior to the target hour
to be forecast. The feature with the most significant weight is the power con-
sumption of the hour before the one to be forecast. Besides historical consump-
tion features, three features from weather information category and calendar
information category are selected into the top 12 important features list.

In order to evaluate the effect of feature selection, we separately train two
models, one using all features and the other using selected features. Both models
are trained on the hourly data of the first 28 days in September and tested on the
following 2 days. Figure 3b shows the forecasting results of one apartment with
ID 39. The results without feature selection are relatively more fluctuated than
the results with feature selection. The MSE of forecasting with feature selection
demonstrates an improvement by 5.44% compared to that with all features.

2 In our experiments, we eliminate the undefined MAPE caused by a zero actual value.
However, the actual power consumption values in our dataset are scarcely zero.
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Fig. 3. Feature selection.

4.3 Comparison with Baselines

In this experiment, we compare our model with two recent works, i.e., the works
from Bansal et al. [5] and Yu et al. [26] with the same training and testing data.

PowerLSTM uses a two-layered LSTM network as discussed in Sect. 3.4. The
cell memory size for each layer is tuned from 160 to 200 using grid search which
can exhaustively search the optimal candidate from a grid of parameter values.
Similarly, the parameters for baseline models are also automatically tuned using
grid search. For GBT, three parameters are tuned, i.e., number of boosting
stages to perform n_estimators, maximum depth of the individual regression
estimators max_depth, and learning rate learning_rate. Its parameter grid is
constructed using n_estimators: (50, 100, 150, 200, 250, 300, 350, 400, 450,
500), max_depth: (1, 2, 3, 4, 5), and learning_rate: (0.001, 0.01, 0.1, 1). For
SVR, three parameters, C', kernel, and gamma are tuned. We construct the
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Fig. 4. Forecasting results from GBT [5], SVR [26] and PowerLSTM.
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Table 3. Accuracy of GBT [5], SVR [26] and PowerLSTM.

Model Error

MSE MAPE
SVR 9.693E-05 | 10.391%
GBT 8.853E-05| 9.512%
PowerLSTM | 6.923E-05| 8.935%

parameter grid using C: (0.001, 0.01, 0.1, 1), kernel: (rbf, linear, poly, sigmoid).
gamma is automatically set corresponding to kernel coefficient or the reciprocal
of number of features.

We use the consumption data of the first 28 days of July as the training
set to train the three models, and forecast/test the expected demand for the
next 2 days using the trained models. We show the forecasting results using
data of apartment 29. As shown in Fig.4, PowerLSTM is able to capture the
trend as well as peaks and valleys better than both GBT [5] and SVR [26] do.
Furthermore, according to Table 3, PowerLSTM brings an improvement in MSE
by 21.80% and 28.58% comparing to GBT [5] and SVR [26], respectively.

4.4 Forecasting in Different Granularities

The intention of this experiment is to investigate the influence of different meter-
ing/forecasting granularities to forecasting tasks. In particular, we evaluate the
forecasting accuracy under practical use cases, for instance., demand response
services often require forecasting in half-hourly or hourly. In this direction, we
use four different granularities when training the model, i.e., every 15 min, every
30min, every 1h and every 2h. We prepare four training datasets by down-
sampling the data points in the original dataset (1 min. granularity) with the
four different granularities, respectively. The average value within the sample
period is used in the down-sampled dataset. The model that is trained using the
dataset with a lower sampling rate forecasts power demand using the same rate.
To evaluate from the viewpoint of a power utility company, we show the results
based on the aggregated power usage data of all 114 apartments. We use data
from 1st February to 28th February as the training data and the data of the
following 2 days as the testing data.

From the forecasting results shown in Fig. 5, all four models can capture the
actual demand trend. Visually, the results from forecasting every 2h are not as
good as those from every 1h and every 30 min. For quantitative understand-
ing, we compare their MSE and MAPE in Table4. The forecasting in 30 min.
granularity demonstrates the best results in both MSE and MAPE. When the
metering /forecasting granularity is low, the model may not be able to capture
the consumption characteristics, as seen in the figure. On the other hand, when
the granularity is high, the consumption may demonstrate more of its fluctuation
and instantaneity, which may be a hindrance to the accurate forecasting task.
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Fig. 5. Forecasting results in different granularities.

Table 4. Forecasting accuracy in different granularities.

Error | Granularity

15 mins | 30 mins | 1 h 2h
MSE 193.218 1 130.982 | 199.767 | 254.400
MAPE | 6.052% | 4.880% |6.493% | 6.773%

Having that said, PowerLSTM offers good performance when used with practi-
cally available smart meter data (e.g., in 30 min. granularity).

5 Conclusion

This paper proposes PowerLSTM, a power demand forecasting model based on
LSTM, which shows an accuracy improvement comparing to two recent repre-
sentative works. Further experiments in different metering/forecasting granu-
larities reveal that the forecasting accuracy varies in different granularities and
PowerLSTM can work well with typical granularities used in today’s smart grid
system.
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